Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2020 Выпуск 3

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

V. I. Bobrovskii

ON MODELS FOR ESTIMATING THE POST-RADIATION DEFECT STATE OF THE γ‘-PHASE

DOI: 10.17804/2410-9908.2020.3.047-060

Processes that take place in the precipitates of γ‘-phase under irradiation with fast neutrons are topical and draw attention when one searches for ways of improving radiation resistance of structural reactor steels. A special feature of these processes is that the formation of vacancies and interstices proceeds at the background of a disordering of the initial crystal lattice, which manifests itself in the formation of antisite defects. X-ray and neutron diffraction techniques are efficient tools of studying changes that occur in the post-radiation structural state of such systems. However, interpretation of the experimental results calls for more complicated models for the description of structural effects exerted by accumulation of radiation defects in the material than those developed before for elementary metals. Several models are proposed in this paper.

Acknowledgements: The research was carried out at the IMP Neutron Material Science Complex within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme “Neutron” No. AAAA-A19-119112590082-1).

Keywords: neutron irradiation, radiation-induced processes, vacancies, interstitials, antisite defects.

Bibliography:

  1. Alab’yev V.M., Vologin V.G., Dubinin S.F., Lapin S.S., Parkhomenko V.D., Sagaradze V.V. Neutron diffraction and electron microscopic investigation of decomposition and radiationinduced ageing of Cr-Ni-Ti austenitic alloys. Physics of Metals and Metallography, 1990, vol. 70, no. 2, pp. 131–137.
  2. Sagaradze V.V., Nalesnik V.M., Lapin S.S., Aliabev V.M. Precipitation hardening and radiation damageability of austenitic stainless steels. Journal of Nuclear Materials, 1993, vol. 202, no. 1–2, pp. 137–144. DOI: 10.1016/0022-3115(93)90036-X.
  3. Okita T., Wolfer W.G., Garner F.A., Sekimura N. Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling. Philosophical Magazine, 2005, vol. 85, no. 18, pp. 2033–2048. DOI: 10.1080/14786430412331331871.
  4. Voronin V.I., Berger I.F., Goshchitskii B.N. Structural changes in a model alloy after irradiation of Fe62Ni35Ti3 with fast neutrons and isochronous temperature annealing. Physics of Metals and Metallography, 2012, vol. 113, no. 9, pp. 878–882. DOI: 10.1134/S0031918X12090141.
  5. Mosbrucker P.L., Brown D.W., Anderoglu O., Balogh L., Maloy S.A., Sisneros T.A., Dippel A.C. Neutron and X-ray diffraction analysis of the effect of irradiation dose and temperature on microstructure of irradiated HT-9 steel. Journal of Nuclear Materials, 2013, vol. 443, no. 1, pp. 522–530. DOI: 10.1016/j.jnucmat.2013.07.065.
  6. Voronin V.I., Arbuzov V.L., Bobrovskii V.I., Danilov S.E., Kozlov K.A., Proskurnina N.V., Sagaradze V.V. Peculiarities of radiation-induced processes in the Cr-Ni-Mo austenitic steels studied by neutron diffraction. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 5, pp. 80–89. DOI: 10.17804/2410-9908.2015.5.080-089. Available at: http://dream-journal.org/issues/2015-5/2015-5_46.html (accessed: 17.08.2020).
  7. Proskurnina N.V., Bobrovskii V.I., Goshchitskii B.N., Volkov A.Yu., Voronin V.I. Radiation induced disordering in Cu3Au. Radiation Physics and Chemistry, 2020, vol. 170, pp. 108654. DOI: 10.1016/j.radphyschem.2019.108654.
  8. Cahn R.W. Lattice parameter changes on disordering intermetallics. Intermetallics, 1999, vol. 7, pp. 1089–1094. DOI: 10.1016/S0966-9795(99)00035-7.
  9. Bhatia M.L., Cahn R.W. Lattice parameter and volume changes on disordering. Intermetallics, 2005, vol. 13, pp. 474–483. DOI: 10.1016/S0966-9795(99)00035-7.
  10. Konobeevskii, S.T., Deistvie izluchenii na materialy. Vvedenie v radiatsionnoe materialovedenie [The Effects of Radiation on Materials. Introduction to the Radiation Material Science]. Moscow, Atomizdat Publ., 1967. (In Russian).
  11. Kovács I., Elsayed H. Point defects in metals. J. Mater Sci., 1976, vol. 11, pp. 529–559. DOI: 10.1007/BF00540934.
  12. Beneagoub A., Thome L. Amorphization Mechanisms in Ion-Bombarded Metallic Alloys.  Phys. Rev. B: Condens. Matter., 1988, vol. 38, pp. 10205–10216.  DOI: 10.1103/PhysRevB.38.10205.
  13. Eshelby J.D. The Continuum Theory of Lattice Defects. Solid State Physics, 1956, vol. 3, pp. 79–144. DOI: 10.1016/S0081-1947(08)60132-0.
  14. Was G.S. Fundamentals of Radiation Materials Science. Metals and Alloys, second ed., New York, Springer, 2017, 1002 p. ISBN 978-1-4939-3436-2. DOI:  10.1007/978-1-4939-3438-6.

В. И. Бобровский

К МОДЕЛЯМ ДЛЯ ОЦЕНКИ ПОСТРАДИАЦИОННОГО ДЕФЕКТНОГО СОСТОЯНИЯ γ‘-ФАЗЫ

Процессы, возникающие в преципитатах γ‘-фазы при облучении быстрыми нейтронами представляют значительный интерес с точки зрения поиска путей улучшения радиационной стойкости конструкционных реакторных сталей. Особенностью этих процессов является то, что образование вакансий и междоузлий протекает в них на фоне разупорядочения исходной решетки, реализующегося в виде формирования антиструктурных дефектов. Рентгеновские и нейтронные дифракционные методы являются эффективным инструментом изучения изменений пострадиационного структурного состояния таких систем. Однако интерпретация экспериментальных результатов требует более сложных моделей для описания структурных эффектов от накопления радиационных дефектов в материале, нежели развитые ранее для простых металлов. Несколько вариантов таких моделей предложены в работе.

Благодарности: Работа выполнена с использованием УНУ «НМК ИФМ» в рамках государственного задания МИНОБРНАУКИ России (тема «Нейтрон» № АААА-А19-119112590082-1).

Ключевые слова: нейтронное облучение, радиационно-индуцированные процессы, вакансии, междоузлия антиструктурные дефекты

Библиография:

  1. Neutron diffraction and electron microscopic investigation of decomposition and radiationinduced ageing of Cr-Ni-Ti austenitic alloys / V. M. Alab’yev, V. G. Vologin, S. F. Dubinin, S. S. Lapin, V. D. Parkhomenko, V. V. Sagaradze // Physics of Metals and Metallography. – 1990. – Vol. 70, no. 2. – P. 131–137.
  2. Precipitation hardening and radiation damageability of austenitic stainless steels / V. V. Sagaradze, V. M. Nalesnik, S. S. Lapin, V. M. Aliabev // Journal of Nuclear Materials. – 1993. – Vol. 202, no. 1–2. – P. 137–144. – DOI: 10.1016/0022-3115(93)90036-X.
  3. Effects of titanium additions to austenitic ternary alloys on microstructural evolution and void swelling / T. Okita, W. G. Wolfer, F. A. Garner, N. Sekimura // Philosophical Magazine. – 2005. – Vol. 85, no. 18. – P. 2033–2048. – DOI: 10.1080/14786430412331331871.
  4. Voronin V. I., Berger I. F., Goshchitskii B. N. Structural changes in a model alloy after irradiation of Fe62Ni35Ti3 with fast neutrons and isochronous temperature annealing // Physics of Metals and Metallography. – 2012. – Vol. 113, no. 9. – P. 878–882. – DOI: 10.1134/S0031918X12090141.
  5. Neutron and X-ray diffraction analysis of the effect of irradiation dose and temperature on microstructure of irradiated HT-9 steel / P. L. Mosbrucker, D. W. Brown, O. Anderoglu, L. Balogh, S. A. Maloy, T. A. Sisneros, A. C. Dippel // Journal of Nuclear Materials. – 2013. – Vol. 443, no. 1. – P. 522–530. – DOI: 10.1016/j.jnucmat.2013.07.065.
  6. Peculiarities of radiation-induced processes in the Cr-Ni-Mo austenitic steels studied by neutron diffraction / V. I. Voronin, V. L. Arbuzov, V. I. Bobrovskii, S. E. Danilov, K. A. Kozlov, N. V. Proskurnina, V. V. Sagaradze // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 5. – P. 80–89. – DOI: 10.17804/2410-9908.2015.5.080-089.
  7. Radiation induced disordering in Cu3Au / N. V. Proskurnina, V. I. Bobrovskii, B. N. Goshchitskii, A. Yu. Volkov, V. I. Voronin // Radiation Physics and Chemistry. – 2020. – Vol. 170. – P. 108654. – DOI: 10.1016/j.radphyschem.2019.108654.
  8. Cahn R. W.  Lattice parameter changes on disordering intermetallics // Intermetallics. – 1999. – Vol. 7. – P. 1089–1094. – DOI: 10.1016/S0966-9795(99)00035-7.
  9. Bhatia M. L., Cahn R. W. Lattice parameter and volume changes on disordering // Intermetallics. – 2005. – Vol. 13. – P. 474–483. – DOI: 10.1016/S0966-9795(99)00035-7.
  10. Конобеевский С. Т. Действие облучения на материалы: введение в радиационное материаловедение. – М. : Атомиздат, 1967. – 402 с.
  11. Kovács I., El Sayed H. Point defects in metals // J. Mater Sci. – 1976. – Vol. 11. – P. 529–559. – DOI: 10.1007/BF00540934.
  12. Beneagoub A., Thome L. Amorphization Mechanisms in Ion-Bombarded Metallic Alloys // Phys. Rev. B: Condens. Matter. – 1988. – Vol. 38. – P. 10205–10216. –   DOI: 10.1103/PhysRevB.38.10205.
  13. Eshelby J. D. The Continuum Theory of Lattice Defects // Solid State Physics. – 1956. – Vol. 3. – P. 79–144. – DOI: 10.1016/S0081-1947(08)60132-0.
  14. Was G. S. Fundamentals of Radiation Materials Science. Metals and Alloys. – 2nd ed. – New York : Springer, 2017. – 1002p. – ISBN 978-1-4939-3436-2. – DOI:  10.1007/978-1-4939-3438-6.

PDF      

Библиографическая ссылка на статью

Bobrovskii V. I. On Models for Estimating the Post-Radiation Defect State of the γ‘-Phase // Diagnostics, Resource and Mechanics of materials and structures. - 2020. - Iss. 3. - P. 47-60. -
DOI: 10.17804/2410-9908.2020.3.047-060. -
URL: http://dream-journal.org/issues/2020-3/2020-3_293.html
(accessed: 20.04.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru