Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2021 Выпуск 5

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

R. A. Savrai, S. V. Gladkovsky, S. V. Lepikhin, Yu. M. Kolobylin

APPROACHES TO THE DEVELOPMENT OF WEAR-RESISTANT LAMINATED METAL COMPOSITES

DOI: 10.17804/2410-9908.2021.5.24-35

Layered metal composites made of dissimilar metals and alloys occupy a special place among modern composite materials. In particular, their use is considered promising when high strength, fatigue resistance, and wear resistance are required. However, there are few data on the abrasive wear resistance of such composites, and further study is necessary. In this paper, an attempt is made to formulate some approaches to the development of wear-resistant laminated metal composites in order to promote more detailed research. For this purpose, the abrasive wear resistance at room (+25 °C) and cryogenic (−196 °C) temperatures of a layered metal composite consisting of low-alloy and maraging steels was studied. The composite was obtained by explosive welding. It is shown that the wear resistance of the composite is determined by the combined influence of a number of factors, namely the presence of interlayer boundaries, the structural state, hardness, and toughness of the steels. It is concluded that, for better wear resistance of a layered composite, the dissimilar layers must wear out evenly under existing environmental conditions.

Acknowledgements: This study was performed within the state assignment for the IES UB RAS, reg. no. AAAA-A18-118020790147-4. Optical microscopy, microhardness measurements, and tribological tests were performed in the Plastometriya shared access center of the Institute of Engineering Science, UB RAS. Sheets with a thickness of 1 mm made of maraging steel with an ultrafine-grained structure were obtained by multi-stage processing in the Institute for Metals Superplasticity Problems of RAS (Ufa). The seven-layer low-alloy-steel–maraging-steel composite was made by explosive welding under the supervision of V. I. Mali in the Lavrentyev Institute of Hydrodynamics, SB RAS (Novosibirsk).

Keywords: laminated metal composite, microstructure, microhardness, abrasive wear

Bibliography:

  1. Jia X., Ling X. Influence of Al2O3 reinforcement on the abrasive wear characteristic of Al2O3/PA1010 composite coatings. Wear, 2005, vol. 258, iss. 9, P. 1342–1347. DOI: 10.1016%2Fj.wear.2004.10.003.
  2. Hu J., Li D.Y., Llewellyn R. Computational investigation of microstructural effects on abrasive wear of composite materials. Wear, 2005, vol. 259, iss. 1–6, P. 6–17. DOI: 10.1016/j.wear.2005.02.017.
  3. Kök M. Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method. Composites Part A, 2006, vol. 37, iss. 3, P. 457–464. DOI: 10.1016/j.compositesa.2005.05.038.
  4. Weber S. Theisen W. Sintering of high wear resistant metal matrix composites. Adv. Eng. Mater., 2007, vol. 9, iss. 3, P. 165–170. – DOI: 10.1002/adem.200600257.
  5. Sivaprasad K., Kumaresh Babu S.P., Natarajan S., Narayanasamy R., Anil Kumar B., Dinesh G. Study on abrasive and erosive wear behaviour of Al 6063/TiB2 in situ composites. Mater. Sci. Eng. A, 2008, vol. 498, iss. 1–2, P. 495–500. DOI: 10.1016/j.msea.2008.09.003.
  6. Kumar S., Balasubramanian V. Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiCp P/M composites–A statistical analysis. Tribol. Int., 2010, vol. 43, iss. 1–2, P. 414–422. DOI: 10.1016/j.triboint.2009.07.003.
  7. Canakci A. Microstructure and abrasive wear behaviour of B4C particle reinforced 2014 Al matrix composites. J. Mater. Sci., 2011, vol. 46, P. 2805–2813. DOI: 10.1007/s10853-010-5156-2.
  8. Leech P.W., Li X.S., Alam N. Comparison of abrasive wear of a complex high alloy hardfacing deposit and WC–Ni based metal matrix composite. Wear, 2012, vol. 294–295, P. 380–386. DOI: 10.1016/j.wear.2012.07.015.
  9. Guignier C., Bueno M.-A., Camillieri B., Tourlonias M., Durand B. Tribological behaviour and wear of carbon nanotubes grafted on carbon fibres. Composites Part A, 2015, vol. 71, P. 168–175. DOI: 10.1016/j.compositesa.2015.01.013.
  10. Sardar S., Karmakar S.K., Das D. High stress abrasive wear characteristics of Al 7075 alloy and 7075/Al2O3 composite. Measurement, 2018, vol. 127, P. 42–62. DOI: 10.1016/j.measurement.2018.05.090.
  11. Guo R.-F., Shen P., Guo N., Yang L.-K., Jiang Q.-C. Al–7Si–5Cu/Al2O3–ZrO2 laminated composites with excellent and anisotropic wear resistance. Adv. Eng. Mater., 2018, vol. 20, iss. 11, p. 1800540. DOI: 10.1002/adem.201800540.
  12. Chandra B.T., Sanjeevamurthy, Shiva Shankar H.S. Effect of heat treatment on dry sand abrasive wear behavior of Al7075-Albite particulate composites. Mater. Today. Proc., 2018, vol. 5, iss. 2, P. 5968–5975. DOI: 10.1016/j.matpr.2017.12.198.
  13. Jiang J., Li S., Yu W., Zhou Y. Microstructural characterization and abrasive wear resistance of a high chromium white iron composite reinforced with in situ formed TiCx. Mater. Chem. Phys., 2019, vol. 224, P. 169–174. DOI: 10.1016/j.matchemphys.2018.12.019.
  14. Grejtak T., Jia X., FeP.on F., Joynson S.G., Cunniffe A.R., Shi Y., Kauffman D.P., Vermaak N., Krick B.A. Topology optimization of composite materials for wear: a route to multifunctional materials for sliding interfaces. Adv. Eng. Mater., 2019, vol. 21, iss. 8, art. 1900366. DOI: 10.1002/adem.201900366.
  15. Qiu B., Xing S., Dong Q., Liu H. Comparison of properties and impact abrasive wear performance of ZrO2-Al2O3/Fe composite prepared by pressure casting and infiltration casting process. Tribol. Int., 2020, vol. 142, art. 105979. DOI: 10.1016/j.triboint.2019.105979.
  16. Savaş Ö. Application of Taguchi’s method to evaluate abrasive wear behavior of functionally graded aluminum based composite. Mater. Today. Commun., 2020, vol. 23, art. 100920. DOI: 10.1016/j.mtcomm.2020.100920.
  17. Chawla K.K. Composite Materials: Science and Engineering, 3rd Edition, Springer–Verlag, New York, 2012. DOI: 10.1007/978-0-387-74365-3.
  18. Wadsworth J., Lesuer D.R. Ancient and modern laminated composites — from the Great Pyramid of Gizeh to Y2K. Mater. Charact., 2000, vol. 45, iss. 4–5, P. 289–313. DOI: 10.1016/S1044-5803(00)00077-2.
  19. Gladkovsky S.V., Kuteneva S.V., Kamantsev I.S., Galeev R.M., Dvoynikov D.А. Formation of the mechanical properties and fracture resistance characteristics of sandwich composites based on the 09G2S steel and the EP678 high-strength steel of various dispersion. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 6, P. 71–90. DOI: 10.17804/2410-9908.2017.6.071-090. Available at: https://dream-journal.org/DREAM_Issue_6_2017_Gladkovsky_S.V._et_al._071_090.pdf
  20. Sniezek L., Szachogluchowicz I., Wachowski M., Torzewski J., Mierzynski J. High cycle fatigue properties of explosively welded laminate AA2519/AA1050/Ti6Al4V. Procedia Structural Integrity, 2017, vol. 5, P. 422–429. DOI: 10.1016/j.prostr.2017.07.191.
  21. Yu W.X., Liu B.X., Cui X.P., Dong Y.C., Zhang X., He J.N., Chen C.X., Yin F.X. Revealing extraordinary strength and toughness of multilayer TWIP/Maraging steels. Mater. Sci. Eng. A, 2018, vol. 727, P. 70–77. DOI: 10.1016/j.msea.2018.04.097.
  22. Gladkovsky S.V., Kuteneva S.V., Sergeev S.N. Microstructure and mechanical properties of sandwich coP.er/steel composites produced by explosive welding. Mater. Charact., 2019, vol. 154, P. 294–303. DOI: 10.1016/j.matchar.2019.06.008.
  23. Veretennikova I.A., Konovalov D.A., Smirnov S.V., Zadvorkin S.M., Putilova E.A., Kamantsev I.S. Effect of steplike plastic deformation on the mechanical properties and the fracture of the bimetal produced by exposition welding. Russ. Metall., 2019, vol. 2019, iss. 5, P. 556–564. DOI: 10.1134/S0036029519050124.
  24. Zhang L., Wang W., Babar Shahzad M., Shan Y., Yang K. A novel laminated metal composite with superior interfacial bonding composed of ultrahigh‑strength maraging steel and 316L stainless steel. J. Iron. Steel. Res. Int., 2020, vol. 27, iss. 4, P. 433–439. DOI: 10.1007/s42243-020-00382-4.
  25. Blazynski T.Z. Explosive welding, forming and compaction, Springer Netherlands, 1983. DOI: 10.1007/978-94-011-9751-9.
  26. Al-Sahib N. Designs and practice of explosive metal working: Theory and application of explosive welding plate, Scholars' Press, 2016.
  27. Greenberg B.A., Ivanov M.A., Kuzmin S.V., Lysak V.I. Explosive welding: Processes and structures, 1st Edition, CRC Press, 2019.
  28. Bataev I.A., Tanaka S., Zhou Q., Lazurenko D.V., Jorge Junior A.M., Bataev A.A., Hokamoto K., Mori A., Chen P. Towards better understanding of explosive welding by combination of numerical simulation and experimental study. Mater. Des., 2019, vol. 169, art. 107649. DOI: 10.1016/j.matdes.2019.107649.
  29. Makarov A.V., Pozdeeva N.A., Savrai R.A., Yurovskikh A.S., Malygina I.Y. Improvement of wear resistance of hardened structural steel by nanostructuring frictional treatment. J. Frict. Wear, 2012, vol. 33, iss. 6, P. 433–442. DOI: 10.3103/S1068366612060050.
  30. Kragelsky I.V., Dobychin M.N., Kombalov V.S. Friction and wear: Calculation methods, Elsevier, 2013. DOI: 10.1016/C2013-0-03333-6.
  31. Trueb L.F. Microstructural effects of heat treatment on the bond interface of explosively welded metals. Metall. Trans., 1971, vol. 2, iss. 1, P. 145–153. DOI: 10.1007/BF02662650.
  32. Ghaderi S.H., Mori A., Hokamoto K. Analysis of explosively welded aluminum–AZ31 magnesium alloy joints. Mater. Trans., 2008, vol. 49, iss. 5, P. 1142–1147. DOI: 10.2320/matertrans.MC200796.
  33. Tarasenko L.V., Titov V.I., Elyutina L.A. Control of variation of properties of maraging chromium-nickel steels in long-term heating. Met. Sci. Heat Treat., 2010, Vol. 52, iss. 5–6, P. 251–254. DOI: 10.1007/s11041-010-9259-9.
  34. Gladkovsky S.V., Potapov A.I., Lepikhin S.V. Studying the deformation resistance of EP679 maraging steel. Diagnostics, Resource and Mechanics of materials and structures, 2015, iss. 4, P. 18–28. DOI: 10.17804/2410-9908.2015.4.018-028. Available at: http://dream-journal.org/netcat/full.php?inside_admin=&sub=473&cc=685&message=32
  35. Potak Y.M. High-strength steels [Vysokoprochnye stali]. Metallurgiya Publ., Moscow, 1970. (In Russian).
  36. Terentiev V.V., Bunin I.Z., Zagreev P.V. Effect of the aging temperature on the complex of mechanical properties of maraging steel. Materialovedenie, 1998, no. 1, P. 40–49. (In Russian).
  37. Buckley D.H. Surface effects in adhesion, friction, wear, and lubrication, Elsevier, 1981.
  38. Khrushchev M.M., Babichev M.A. Abrazivnoe iznashyvanie [Abrasive wear]. Nauka Publ., Moscow, 1970. (In Russian).
  39. Chintha A.R., Valtonen K., Kuokkala V.-T., Kundu S., Peet M.J., Bhadeshia H.K.D.H. Role of fracture toughness in impact-abrasion wear. Wear, 2019, vol. 428–429, P. 430–437. DOI: 10.1016/j.wear.2019.03.028.

Р. А. Саврай, С. В. Гладковский, С. В. Лепихин, Ю. М. Колобылин

ПОДХОДЫ К РАЗРАБОТКЕ ИЗНОСОСТОЙКИХ СЛОИСТЫХ МЕТАЛЛИЧЕСКИХ КОМПОЗИТОВ

Слоистые металлические композиты, изготовленные из разноименных металлов и сплавов, занимают особое место среди современных композиционных материалов. В частности, их использование считается перспективным в тех случаях, когда требуется высокая прочность, сопротивление усталости и износостойкость. Однако в литературе недостаточно данных по абразивной износостойкости таких композитов, поэтому необходимо дальнейшее изучение этого вопроса. В настоящей работе была предпринята попытка сформулировать некоторые подходы к разработке износостойких слоистых металлических композитов с целью содействия проведению дальнейших, более детальных исследований. Для этого была исследована абразивная износостойкость при комнатной (+25 °C) и криогенной (−196 °C) температуре слоистого металлического композита на основе низколегированной и мартенситно-стареющей сталей. Композит был получен с помощью сварки взрывом. Показано, что износостойкость композита определяется совместным влиянием ряда факторов, а именно, наличием межслойных границ, структурным состоянием, твердостью и вязкостью составляющих композит сталей. Был сделан вывод о том, что для повышения износостойкость слоистого композита, разноименные слои должны изнашиваться равномерно при данных условиях окружающей среды.

Ключевые слова: слоистый металлический композит, микроструктура, микротвердость, абразивный износ

Библиография:

  1. Jia X., Ling X. Influence of Al2O3 reinforcement on the abrasive wear characteristic of Al2O3/PA1010 composite coatings // Wear. – 2005. – Vol. 258, iss. 9. – P. 1342–1347. – DOI: 10.1016%2Fj.wear.2004.10.003.
  2. Hu J., Li D.Y., Llewellyn R. Computational investigation of microstructural effects on abrasive wear of composite materials // Wear. – 2005. – Vol. 259, iss. 1–6. – P. 6–17. – DOI: 10.1016/j.wear.2005.02.017.
  3. Kök M. Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method // Composites Part A. – 2006. – Vol. 37, iss. 3. – P. 457–464. – DOI: 10.1016/j.compositesa.2005.05.038.
  4. Weber S. Theisen W. Sintering of high wear resistant metal matrix composites // Adv. Eng. Mater. – 2007. – Vol. 9, iss. 3. – P. 165–170. – DOI: 10.1002/adem.200600257.
  5. Study on abrasive and erosive wear behaviour of Al 6063/TiB2 in situ composites / K. Sivaprasad, S. P. Kumaresh Babu, S. Natarajan, R. Narayanasamy, B. Anil Kumar, G. Dinesh // Mater. Sci. Eng. A. – 2008. – Vol. 498, iss. 1–2. – P. 495–500. – DOI: 10.1016/j.msea.2008.09.003.
  6. Kumar S., Balasubramanian V. Effect of reinforcement size and volume fraction on the abrasive wear behaviour of AA7075 Al/SiCp P/M composites – A statistical analysis // Tribol. Int. – 2010. – Vol. 43, iss. 1–2. – P. 414–422. – DOI: 10.1016/j.triboint.2009.07.003.
  7. Canakci A. Microstructure and abrasive wear behaviour of B4C particle reinforced 2014 Al matrix composites // J. Mater. Sci. – 2011. – Vol. 46. – P. 2805–2813. – DOI: 10.1007/s10853-010-5156-2.
  8. Leech P. W., Li X. S., Alam N. Comparison of abrasive wear of a complex high alloy hardfacing deposit and WC–Ni based metal matrix composite // Wear. – 2012. – Vol. 294–295. – P. 380–386. – DOI: 10.1016/j.wear.2012.07.015.
  9. Guignier C., Bueno M.-A., Camillieri B., Tourlonias M., Durand B. Tribological behaviour and wear of carbon nanotubes grafted on carbon fibres // Composites Part A. – 2015. – Vol. 71. – P. 168–175. – DOI: 10.1016/j.compositesa.2015.01.013.
  10. Sardar S., Karmakar S. K., Das D. High stress abrasive wear characteristics of Al 7075 alloy and 7075/Al2O3 composite // Measurement. – 2018. – Vol. 127. – P. 42–62.  – DOI: 10.1016/j.measurement.2018.05.090.
  11. Guo R.-F., Shen P., Guo N., Yang L.-K., Jiang Q.-C. Al–7Si–5Cu/Al2O3–ZrO2 laminated composites with excellent and anisotropic wear resistance // Adv. Eng. Mater. – 2018. – Vol. 20, iss. 11. – P. 1800540. – DOI: 10.1002/adem.201800540.
  12. Chandra B. T., Sanjeevamurthy, Shiva Shankar H. S. Effect of heat treatment on dry sand abrasive wear behavior of Al7075-Albite particulate composites // Mater. Today. Proc. – 2018. – Vol. 5, iss. 2. – P. 5968–5975. – DOI: 10.1016/j.matpr.2017.12.198.
  13. Microstructural characterization and abrasive wear resistance of a high chromium white iron composite reinforced with in situ formed TiCx / J. Jiang, S. Li, W. Yu, Y. Zhou // Mater. Chem. Phys. – 2019. – Vol. 224. – P. 169–174. – DOI: 10.1016/j.matchemphys.2018.12.019.
  14. Topology optimization of composite materials for wear: a route to multifunctional materials for sliding interfaces / T. Grejtak, X. Jia, F. FeP.on, S. G. Joynson, A. R. Cunniffe, Y. Shi, D. P. Kauffman, N. Vermaak, B. A. Krick // Adv. Eng. Mater. – 2019. – Vol. 21, iss. 8, art. 1900366. – DOI: 10.1002/adem.201900366.
  15. Comparison of properties and impact abrasive wear performance of ZrO2-Al2O3/Fe composite prepared by pressure casting and infiltration casting process / B. Qiu, S. Xing, Q. Dong, H. Liu // Tribol. Int. – 2020. – Vol. 142, art. 105979. – DOI: 10.1016/j.triboint.2019.105979.
  16. Savaş Ö. Application of Taguchi’s method to evaluate abrasive wear behavior of functionally graded aluminum based composite // Mater. Today. Commun. – 2020. – Vol. 23, art. 100920. – DOI: 10.1016/j.mtcomm.2020.100920.
  17. Chawla K. K. Composite Materials: Science and Engineering, 3rd Edition. – New York : Springer-Verlag, 2012. – DOI: 10.1007/978-0-387-74365-3.
  18. Wadsworth J., Lesuer D. R. Ancient and modern laminated composites – from the Great Pyramid of Gizeh to Y2K // Mater. Charact. – 2000. – Vol. 45, iss. 4–5. – P. 289–313. – DOI: 10.1016/S1044-5803(00)00077-2.
  19. Formation of the mechanical properties and fracture resistance characteristics of sandwich composites based on the 09G2S steel and the EP678 high-strength steel of various dispersion / Gladkovsky S. V., S. V. Kuteneva, I. S. Kamantsev, R. M. Galeev, D. А. Dvoynikov // Diagnostics, Resource and Mechanics of materials and structures. – 2017. – Iss. 6. – P. 71–90. – DOI: 10.17804/2410-9908.2017.6.071-090. – URL: https://dream-journal.org/DREAM_Issue_6_2017_Gladkovsky_S.V._et_al._071_090.pdf
  20. High cycle fatigue properties of explosively welded laminate AA2519/AA1050/Ti6Al4V /  L. Sniezek, I. Szachogluchowicz, M. Wachowski, J. Torzewski, J. Mierzynski // Procedia Structural Integrity. – 2017. – Vol. 5. – P. 422–429. – DOI: 10.1016/j.prostr.2017.07.191.
  21. Revealing extraordinary strength and toughness of multilayer TWIP/Maraging steels / W. X. Yu, B. X. Liu, X. P. Cui, Y. C. Dong, X. Zhang, J. N. He, C. X. Chen, F. X. Yin // Mater. Sci. Eng. A. – 2018. – Vol. 727. – P. 70–77. – DOI: 10.1016/j.msea.2018.04.097.
  22. Gladkovsky S. V., Kuteneva S. V., Sergeev S. N. Microstructure and mechanical properties of sandwich coP.er/steel composites produced by explosive welding // Mater. Charact. – 2019. – Vol. 154. – P. 294–303. – DOI: 10.1016/j.matchar.2019.06.008.
  23. Effect of steplike plastic deformation on the mechanical properties and the fracture of the bimetal produced by exposition welding / I. A. Veretennikova, D. A. Konovalov, S. V. Smirnov, S. M. Zadvorkin, E. A. Putilova, I. S. Kamantsev // Russ. Metall. – 2019. – Vol. 2019, iss. 5. – P. 556–564. – DOI: 10.1134/S0036029519050124.
  24. A novel laminated metal composite with superior interfacial bonding composed of ultrahigh‑strength maraging steel and 316L stainless steel / L. Zhang, W. Wang, M. Babar Shahzad, Y. Shan, K. Yang // J. Iron. Steel. Res. Int. – 2020. – Vol. 27, iss. 4. – P. 433–439. – DOI: 10.1007/s42243-020-00382-4.
  25. Blazynski T. Z. Explosive welding, forming and compaction. – Springer Netherlands, 1983. – DOI: 10.1007/978-94-011-9751-9.
  26. Al-Sahib N. Designs and practice of explosive metal working: Theory and application of explosive welding plate. – Scholars' Press, 2016.
  27. Explosive welding: Processes and structures / B. A. Greenberg, M. A. Ivanov, S. V. Kuzmin, V. I. Lysak. – 1st Edition. – CRC Press, 2019.
  28. Towards better understanding of explosive welding by combination of numerical simulation and experimental study / I. A. Bataev, S. Tanaka, Q. Zhou, D. V. Lazurenko, A. M. Jorge Junior, A. A. Bataev, K. Hokamoto, A. Mori, P. Chen // Mater. Des. – 2019. – Vol. 169, art. 107649. – DOI: 10.1016/j.matdes.2019.107649.
  29. Improvement of wear resistance of hardened structural steel by nanostructuring frictional treatment / A. V. Makarov, N. A. Pozdeeva, R. A. Savrai, A. S. Yurovskikh, I. Y. Malygina // J. Frict. Wear. – 2012. – Vol. 33, iss. 6. – P. 433–442. – DOI: 10.3103/S1068366612060050.
  30. Kragelsky I. V., Dobychin M. N., Kombalov V. S. Friction and wear: Calculation methods. – Elsevier, 2013. – DOI: 10.1016/C2013-0-03333-6.
  31. Trueb L. F. Microstructural effects of heat treatment on the bond interface of explosively welded metal // Metall. Trans. – 1971. – Vol. 2, iss. 1. – P. 145–153. – DOI: 10.1007/BF02662650.
  32. Ghaderi S. H., Mori A., Hokamoto K. Analysis of explosively welded aluminum–AZ31 magnesium alloy joints // Mater. Trans. – 2008. – Vol. 49, iss. 5. – P. 1142–1147. – DOI: 10.2320/matertrans.MC200796.
  33. Tarasenko L. V., Titov V. I., Elyutina L. A. Control of variation of properties of maraging chromium-nickel steels in long-term heating // Met. Sci. Heat Treat. – 2010. – Vol. 52, iss. 5–6. – P. 251–254. – DOI: 10.1007/s11041-010-9259-9.
  34. Gladkovsky S. V., Potapov A. I., Lepikhin S. V. Studying the deformation resistance of EP679 maraging steel // Diagnostics, Resource and Mechanics of materials and structures. – 2015. – Iss. 4. – P. 18–28. – DOI: 10.17804/2410-9908.2015.4.018-028. Available at: http://dream-journal.org/netcat/full.php?inside_admin=&sub=473&cc=685&message=32
  35. Потак Я. М. Высокопрочные стали. – М. : Металлургия, 1970.
  36. Терентьев В. В., Бунин И. Ж., Загреев П. В. Влияние температуры старения на комплекс механических свойств мартенситностареющей стали // Материаловедение. – 1998. – № 1. – С. 40–49.
  37. Buckley D. H. Surface effects in adhesion, friction, wear, and lubrication. – Elsevier, 1981.
  38. Хрущев М. М., Бабичев М. А. Абразивное изнашивание. – Москва : Наука, 1970. – 251 с.
  39. Role of fracture toughness in impact-abrasion wear / A. R. Chintha, K. Valtonen, V.-T. Kuokkala, S. Kundu, M. J. Peet, H. K. D. H. Bhadeshia // Wear. – 2019. – Vol. 428–429. – P. 430–437. – DOI: 10.1016/j.wear.2019.03.028.


PDF      

Библиографическая ссылка на статью

Approaches to the Development of Wear-Resistant Laminated Metal Composites / R. A. Savrai, S. V. Gladkovsky, S. V. Lepikhin, Yu. M. Kolobylin // Diagnostics, Resource and Mechanics of materials and structures. - 2021. - Iss. 5. - P. 24-35. -
DOI: 10.17804/2410-9908.2021.5.24-35. -
URL: http://dream-journal.org/issues/2021-5/2021-5_343.html
(accessed: 25.04.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru