Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2022 Выпуск 6

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. V. Chumaevskii, N. N. Shamarin, A. O. Panfilov, A. P. Zykova, A. V. Filippov, E. N. Moskvichev, V. E. Rubtsov, E. A. Kolubaev

OBTAINING A STEEL-BASED METAL MATRIX COMPOSITE BY WIRE-FEED ADDITIVE ELECTRON BEAM MANUFACTURING WITH THE INTRODUCTION OF TUNGSTEN POWDER

DOI: 10.17804/2410-9908.2022.6.076-085

Wire-feed electron-beam additive technology is used to produce samples of a composite material based on the 40Cr9Si2 steel by additionally introducing tungsten powder during printing. Controlling the feed of wire and powder makes it possible to form composite structures in the surface layers of the samples while maintaining the sample bulks with high strength and plasticity.
The content of tungsten in the surface layer increases smoothly. This has a positive effect on the structure of the samples and prevents cracking or delamination at the boundary between the base metal and the surface layer. The tensile strength of the layers decreases with the introduction of tungsten in comparison with the bulk of the sample. In this case, the surface layers are characterized by a multiple increase in wear resistance, especially at elevated test temperatures.

Acknowledgements: This work was carried out within the framework of a grant from the President of the Russian Federation for the state support of leading scientific schools, No. NSh-1174.2022.4, and the state as-signment for the ISPMS SB RAS, subject number FWRW-2022-0004. The equipment of the Nanotekh shared research facilities, ISPMS SB RAS, was used for the research.

Keywords: electron-beam additive manufacturing, steel–tungsten composite, microstructure, mechanical proper-ties, friction and wear

Bibliography:

  1. Chumaevskii A.V., Panfilov A.O., Knyazhev E.O., Zykova A.P., Gusarova A.V., Kalashnikov K.N., Vorontsov A.V., Savchenko N.L., Nikonov S.Y., Cheremnov A.M., Rubtsov V.E., Kolubaev E.A. Production of Gradient Intermetallic Layers Based on Aluminum Alloy and Copper by Electron–beam Additive Technology. Diagnostics, Resource and Mechanics of materials and structures, 2021, pp. 19–31. DOI: 10.17804/2410-9908.2021.6.019-031. Available at: https://dream-journal.org/issues/2021-6/2021-6_342.html
  2. Pu Ze, Dong Du, Wang Kaiming, Liu Guan, Zhang Dongqi, Zhang Haoyu, Xi Rui, Wang Xiebin, Chang Baohua. Study on the NiTi shape memory alloys in-situ synthesized by dual-wire-feed electron beam additive manufacturing. Additive Manufacturing, 2022, vol. 26, pp. 102886. DOI: 10.1016/j.addma.2022.102886.
  3. Osipovich K.S., Chumaevskii A., Gusarova A.V., Kalashnikov K.N., Kolubaev Evgeny A. Mechanical properties of steel-copper polymetal manufactured by the wire-feed electron-beam additive technology. High Temperature Material Processes, 2020, vol. 24, pp. 91–98. DOI: 10.1615/HighTempMatProc.2020033790.
  4. Zykova A., Chumaevskii A., Vorontsov A., Kalashnikov K., Gurianov D., Gusarova A., Kolubaev E.A. Evolution of microstructure and properties of Fe-Cu, manufactured by electron beam additive manufacturing with subsequent friction stir processing. Materials Letters, 2022, vol. 307, pp. 131023. DOI: 10.1016/j.matlet.2021.131023.
  5. Martin J.H., Yahata B.D., Hundley J.M., Mayer J.A., Schaedler T.A., Pollock T.M. 3D printing of high-strength aluminium alloys. Nature, 2017, vol. 549 (7672), pp. 365–369. DOI: 10.1038/nature23894.
  6. Ghanavati R., Naffakh-Moosavy H. Additive manufacturing of functionally graded metallic materials: A review of experimental and numerical studies. Journal of Materials Research and Technology, 2021, vol. 13, pp. 1628–1664. DOI: 10.1016/j.jmrt.2021.05.022. 
  7. Panfilov A.O., Knyazhev E.O., Kalashnikova T.A., Kalashnikov K.N., Chumaevskii A.V., and Nikonov S.Yu. Manufacturing of Cu-Ni and Fe-Cu-Ni polymetallic materials by the electron-beam additive technology. AIP Conference Proceedings, 2020, vol. 2310, pp. 020242. DOI: 10.1063/5.0034751.   
  8. Xu J., Zhou Q., Kong J., Peng Yong, Shun Guo, Jun Zhu, Fan Jikang. Solidification behavior and microstructure of Ti-(37−52) at% Al alloys synthesized in situ via dual-wire electron beam freeform fabrication. Additive Manufacturing, 2020, vol. 46, pp. 102113. DOI: 10.1016/J.ADDMA.2021.102113.
  9. Astafurova E.G., Astafurov S.V., Reunova K.A., Melnikov E.V., Moskvina V.A., Panchenko M.Yu., Maier G.G., Rubtsov V.E., Kolubaev E.A. Structure Formation in Vanadium-Alloyed Chromium-Manganese Steel with a High Concentration of Interstitial Atoms C+N=1.9 wt % during Electron-Beam Additive Manufacturing. Phys Mesomech, 2022, vol. 25, pp. 1–11. DOI: 10.1134/S1029959922010015.
  10. Filippov A.V., Khoroshko E.S., Shamarin N.N., Savchenko N.L., Moskvichev E.N., Utyaganova V.R., Kolubaev E.A., Smolin A.Y., Tarasov S.Y. Characterization of gradient CuAl–B4C composites additively manufactured using a combination of wire-feed and powder-bed electron beam deposition methods. Journal of Alloys and Compounds, 202, vol. 859, pp. 157824. DOI: 10.1016/j.jallcom.2020.157824.

А. В. Чумаевский, Н. Н. Шамарин, А. О. Панфилов, А. П. Зыкова, А. В. Филиппов, Е. Н. Москвичев, В. Е. Рубцов, Е. А. Колубаев

ПОЛУЧЕНИЕ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ СТАЛИ МЕТОДОМ ПРОВОЛОЧНОЙ АДДИТИВНОЙ ЭЛЕКТРОННО-ЛУЧЕВОЙ ТЕХНОЛОГИИ С ВВЕДЕНИЕМ ПОРОШКА ВОЛЬФРАМА

Методом проволочной электронно-лучевой аддитивной технологии были получены образцы композиционного материала на основе стали 40Х9С2 посредством дополнительного введения при печати порошка вольфрама. Управление подачей проволоки и порошка позволило сформировать композитные структуры в поверхностных слоях образцов с сохранением основного объема с высокой прочностью и пластичностью. Содержание вольфрама в поверхностном слое увеличивается плавно, что положительно влияет на структуру образцов и препятствует образованию трещин или расслоений на границе основного металла и поверхностного слоя. Временное сопротивление при растяжении слоев с введением вольфрама снижается по сравнению с основным объемом образца. При этом, для поверхностных слоев характерно многократное увеличение износостойкости, особенно при повышенных температурах испытания.

Благодарности: Исследования проводились с использованием Центра коллективного пользования ИФПМ СО РАН «НАНОТЕХ». Работа выполнена в рамках гранта Президента Российской Федерации для государ-ственной поддержки ведущих научных школ НШ-1174.2022.4 и государственного задания ИФПМ СО РАН, тема номер FWRW-2022-0004.

Ключевые слова: электронно-лучевое аддитивное производство, композит «сталь–вольфрам», микрострукту-ра, механические свойства, трение и износ

Библиография:

  1. Production of Gradient Intermetallic Layers Based on Aluminum Alloy and Copper by Electron–beam Additive Technology / A. V. Chumaevskii, A. O. Panfilov, E. O. Knyazhev, A. P. Zykova, A. V. Gusarova, K. N. Kalashnikov, A. V. Vorontsov, N. L. Savchenko, S. Y. Nikonov, A. M. Cheremnov, V. E. Rubtsov, E. A. Kolubaev // Diagnostics, Resource and Mechanics of materials and structures. – 2021. – P. 19-31. – DOI: 10.17804/2410-9908.2021.6.019-031. – URL: https://dream-journal.org/issues/2021-6/2021-6_342.html
  2. Study on the NiTi shape memory alloys in-situ synthesized by dual-wire-feed electron beam additive manufacturing / Ze Pu, Dong Du, Kaiming Wang, Guan Liu, Dongqi Zhang, Haoyu Zhang, Rui Xi, Xiebin Wang, Baohua Chang // Additive Manufacturing. – 2022. – Vol. 26. – P. 102886. – DOI: 10.1016/j.addma.2022.102886.
  3. Mechanical properties of steel-copper polymetal manufactured by the wire-feed electron-beam additive technology / K. S. Osipovich, A. Chumaevskii, A. V. Gusarova, K. N. Kalashnikov, Evgeny A. Kolubaev // High Temperature Material Processes. – 2020. – Vol. 24. – P. 91–98. – DOI: 10.1615/HighTempMatProc.2020033790.
  4. Evolution of microstructure and properties of Fe-Cu, manufactured by electron beam additive manufacturing with subsequent friction stir processing / A. Zykova, A. Chumaevskii, A. Vorontsov, K. Kalashnikov, D. Gurianov, A. Gusarova, E. Kolubaev // Materials Letters. – 2022. – Vol. 307. – P. 131023. – DOI: 10.1016/j.matlet. 2021.131023.
  5. 3D printing of high-strength aluminium alloys / J. H. Martin, B. D. Yahata, J. M. Hundley, J. A. Mayer, T. A. Schaedler, T. M. Pollock // Nature. – 2017. – Vol. 549 (7672). – P. 365–369. – DOI: 10.1038/nature23894.
  6. Ghanavati R., Naffakh-Moosavy H. Additive manufacturing of functionally graded metallic materials: A review of experimental and numerical studies // Journal of Materials Research and Technology. – 2021. – Vol. 13. – P. 1628–1664. – DOI: 10.1016/j.jmrt.2021.05.022.  
  7. Manufacturing of Cu-Ni and Fe-Cu-Ni polymetallic materials by the electron-beam additive technology / A. O. Panfilov, E. O. Knyazhev, T. A. Kalashnikova, K. N. Kalashnikov, A. V. Chumaevskii, and S. Yu. Nikonov // AIP Conference Proceedings. – 2020. – Vol. 2310. – P. 020242. – DOI: 10.1063/5.0034751.
  8. Solidification behavior and microstructure of Ti-(37−52) at% Al alloys synthesized in situ via dual-wire electron beam freeform fabrication / Junqiang Xu, Qi Zhou, Jian Kong, Yong Peng, Guo Shun, Zhu Jun, and Jikang Fan // Additive Manufacturing. – 2020. – Vol. 46. – P. 102113. – DOI: 10.1016/J.ADDMA.2021.102113. 
  9. Structure Formation in Vanadium-Alloyed Chromium-Manganese Steel with a High Concentration of Interstitial Atoms C+N=1.9 wt % during Electron-Beam Additive Manufacturing / E. G. Astafurova, S. V. Astafurov, K. A. Reunova, E. V. Melnikov, V. A. Moskvina, M. Yu. Panchenko, G. G. Maier, V. E. Rubtsov, E. A. Kolubaev // Phys Mesomech, 2022, vol. 25, pp. 1–11. DOI: 10.1134/S1029959922010015.
  10. Characterization of Gradient CuAl-B4C Composites Additively Manufactured Using a Combination of Wire-Feed and Powder-Bed Electron Beam Deposition Methods / A. V. Filippov, E. S. Khoroshko, N. N. Shamarin, N. L. Savchenko, E. N. Moskvichev, V. R. Utyaganova, E. A. Kolubaev, A. Y. Smolin and S. Y. Tarasov // J. Alloys Compd. – 2021. – 859. – P. 157824. – DOI: 10.1016/j.jallcom.2020.157824.

PDF      

Библиографическая ссылка на статью

Obtaining a Steel-Based Metal Matrix Composite by Wire-Feed Additive Electron Beam Manufacturing with the Introduction of Tungsten Powder / A. V. Chumaevskii, N. N. Shamarin, A. O. Panfilov, A. P. Zykova, A. V. Filippov, E. N. Moskvichev, V. E. Rubtsov, E. A. Kolubaev // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 6. - P. 76-85. -
DOI: 10.17804/2410-9908.2022.6.076-085. -
URL: http://dream-journal.org/issues/2022-6/2022-6_383.html
(accessed: 28.03.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru