Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

2022 Выпуск 6

Все выпуски
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

L. S. Goruleva, S. M. Zadvorkin, A. N. Mushnikov

EFFECT OF PLASTIC DEFORMATION ON THE PHASE COMPOSITION AND ELECTROMAGNETIC CHARACTERISTICS OF THE 321N AUSTENITIC STEEL (08Kh18N10T)

DOI: 10.17804/2410-9908.2022.6.095-106

The changes in the phase composition and electromagnetic properties of the 321N chromium-nickel austenitic steel under plastic deformation by uniaxial tension are studied. As strain increases from 0 to 0.37, the content of ferromagnetic α′-martensite in the steel increases monotonically to 60%. The electrical resistivity and the initial magnetic permeability increase monotonically by factors of 1,25 and 18, respectively. To monitor the strain state and the content of α'-martensite in products made of the 321N steel, it is preferable to use initial magnetic permeability rather than electrical resistance. The skin layer thickness of the deformed 321N steel for frequencies from 5 to 1000 kHz is calculated from the experimental values of initial magnetic permeability and electrical resistivity. Eddy current diagnostics of the state of the surface of products made of this steel, hardened by surface plastic deformation, is proposed to be performed at frequencies ranging between 100 and 200 kHz.

Acknowledgements: The work was performed under state assignment No. AAAA-A18-118020790148-1. The study used the equipment of the Plastometriya shared research facilities. We appreciate the assistance of R. A. Savrai, P. A. Skorynina, and I. A. Zabolotskikh, mem-bers of the laboratory of construction materials science, IES UB RAS, for providing us with test spec-imens.

Keywords: metastable austenitic steels, uniaxial tension, phase composition, skin layer thickness, eddy current method

Bibliography:

  1. Filippov M.A., Litvinov V.S., Nemirovskiy Yu.R. Stali s metastabilnym austenitom [Steels with metastable austenite]. Moscow, Metallurgiya Publ., 1988, 255 p. (In Russian).
  2. Borgioli F. From austenitic stainless steel to expanded austenite-S phase: formation, characteristics and properties of an elusive metastable phase. Metals, 2020, vol. 10, iss. 2, No. 187, pp. 1–46. DOI: 10.3390/met10020187.
  3. Basak S.,·Sharma S.K., Mondal M., Sahu·K.K., Gollapudi S., Majumdar J.D., Hong S.T. Electron beam surface treatment of 316L austenitic stainless steel: improvements in hardness, wear, and corrosion resistance. Metals and Materials International, 2020, vol. 27, iss. 5, pp. 953–961. DOI: 10.1007/s12540-020-00773-y.
  4. Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels. Materials Science and Engineering R-Reports, 2009, vol. 65, iss. 4–6, pp. 39–104. DOI: 10.1016/j.mser.2009.03.001.
  5. Savrai R.A., Makarov A.V., Malygina I.Yu., Rogovaya S.A., Osintseva A.L. Improving the Strength of the Aisi 321 Austenitic Stainless Steel by Frictional Treatment. Diagnostics, Resource and Mechanics of materials and structures, 2017, iss. 5, pp. 43–62. DOI: 10.17804/2410-9908.2017.5.043-062.
  6. Makarov A.V., Skorynina P.A., Osintseva A. L., Yurovskikh A.S., Savrai R. A. Improving the tribological properties of austenitic 12KH18N10T steel by nanostructuring frictional treatment. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty), 2015, No. 4 (69), pp. 80–92. DOI: 10.17212/1994-6309-2015-4-80-92. (In Russian).
  7. Khaksaran A., Taghiabadi R., Jafarzadegan M. Tribological properties of surface friction hardened AISI 316L steel. Transactions of the Indian Institute of Metals, 2021, 74 (8), pp. 1979–1989. DOI: 10.1007/s12666-021-02306-6.
  8. Makarov A.V., Skorynina P.A., Yurovskikh A.S., Osintseva A.L. Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel. The Physics of Metals and Metallography, 2017, vol. 118, No. 12, pp. 1225–1235. DOI: 10.1134/S0031918X17120092.
  9. Takaki S., Fukunaga K., Syarif J., Tsuchiyama T. Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel. Mater. Trans., 2004, 45 (7), pp. 2245–2251. DOI: 10.2320/matertrans.45.2245.
  10. Wu Y., Guelorget B., Sun Z., Déturche R., Retraint D. Characterization of gradient properties generated by SMAT for a biomedical grade 316L stainless steel. Materials Characterization, 2019, vol. 155, pp. 109788. DOI: 10.1016/j.matchar.2019.109788.
  11. Makarov A.V., Savray R.A., Skorynina P.A., Volkova E.G. Development of Methods for Steel Surface Deformation Nanostructuring. Metal Science and Heat TreatmentThe Physics of Metals and Metallography, 2020, vol. 62, pp. 61–69. DOI: 10.1007/s11041-020-00529-w.
  12. Savrai R.A., Kolobylin Y.M., Volkova E.G. Micromechanical characteristics of the surface layer of metastable austenitic steel after frictional treatment.  2021, vol. 122, No. 8, pp. 800–806. DOI: 10.1134/S0031918X21080123.
  13. Savrai R.A., Kogan L.K. Effect of Hardening Frictional Treatment on Features of Eddy Current Testing of Fatigue Degradation of Metastable Austenitic Steel under Gigacycle Contact Fatigue Loading. Russian Journal of Nondestructive Testing, 2022, vol. 58, pp. 722–731. DOI: 10.1134/S1061830922080095.
  14. Silva V.M.A., Camerini C.G., Pardal J.M., De Blаs J.G., Pereira G.R. Eddy current characterization of cold-worked AISI 321 stainless steel. Journal of Materials Research and Technology, 2018, vol. 7, iss. 3, pp. 395–401. DOI: 10.1016/j.jmrt.2018.07.002.
  15. Liu K., Zhao Z., Zhang Z. Eddy current assessment of the cold rolled deformation behavior of AISI stainless steel. Journal of Materials Engineering and Performance, 2012, vol. 21, iss. 8, pp. 1772–1776. DOI: 10.1007/s11665-011-0080-4.
  16. Gorkunov E.S., Zadvorkin S.M., Mitropolskaya S.Yu., Vichuzhanin D.I., Solov’ev K.E. Change in magnetic properties of metastable austenitic steel due to elastoplastic deformation. Metal Science and Heat Treatment, 2009, vol. 51, pp. 423–428. DOI: 10.1007/S11041-010-9185-X.
  17. Mirkin L.I. Rentgenostrukturnyj kontrol mashinostroitelnykh materialov: spravochnik [X-ray structural control of machine-building materials]. Moscow, MGU Publ., 1976, 134 p. (In Russian).
  18. Dorofeev A.L., Kazamanov Yu.G., Cherenkova Z.V. Metod vikhrevykh tokov (induktsionnaya strukturoskopiya, defektoskopiya i tolshchinometriya) [Eddy current method (induction structroscopy, non-destructive testing and thickness measurement)]. Moscow, Mashinostroenie Publ., 1969, 89 p. (In Russian).
  19. Bobrov A.L., Vlasov K.V., Bekher S.A. Osnovy vikhretokovogo nerazrushaiushchego kontrolia: uchebnoe posobie [Principles of eddy current non-destructive testing: textbook]. Novosibirsk, Izd-vo SGUPS Publ., 2019. 98 p. (In Russian).
  20. Vychuzhanin D.I., Makarov A.V., Smirnov S.V., Pozdeeva N.A., Malygina I.Y. Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter. Journal of Machinery Manufacture and Reliability, 2011, vol. 40, No. 6, p. 554–560. DOI: 10.3103/S1052618811050190.
  21. Savrai R.A., Osintseva A.L. Effect of hardened surface layer obtained by frictional treatment on the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests. Materials Science and Engineering: A, 2021, vol. 802, pp. 140679. DOI: 10.1016/j.msea.2020.140679.

Л. С. Горулева, С. М. Задворкин, А.Н. Мушников

ВЛИЯНИЕ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ НА ФАЗОВЫЙ СОСТАВ И ЭЛЕКТРОМАГНИТНЫЕ ХАРАКТЕРИСТИКИ АУСТЕНИТНОЙ СТАЛИ МАРКИ 321Н (08Х18Н10Т)

Изучены закономерности изменения фазового состава и электромагнитных свойств хромоникелевой аустенитной стали марки 321Н при пластической деформации одноосным растяжением. Установлено, что с ростом степени деформации от 0 до 0,37 содержание ферромагнитного α′-мартенсита в исследованной стали монотонно возрастает до 60 %, при этом удельное электросопротивление и начальная магнитная проницаемость монотонно увеличиваются в 1,25 и 18 раз, соответственно. Сделан вывод о предпочтительном использовании начальной магнитной проницаемости, нежели электросопротивления, для контроля деформированного состояния изделий из стали 321Н и содержания в них α′-мартенсита. По экспериментальным значениям начальной магнитной проницаемости и удельного электрического сопротивления рассчитана толщина скин-слоя деформированной стали 321Н для частот от 5 до 1000 кГц. Предложено вихретоковую диагностику состояния поверхности изделий из этих сталей, упрочненных с помощью поверхностной пластической деформации, проводить на частотах 100…200 кГц.

Благодарности: Работа выполнена в рамках государственного задания, № государственной регистрации АААА-А18-118020790148-1. При проведении исследований использовано оборудование ЦКП «Пластометрия». Авторы выражают благодарность сотрудникам лаборатории конструкционного материаловедения Савраю Р.А., Скорыниной П.А. и Заболотских И.А. за предоставление образцов для исследований.

Ключевые слова: аустенитные метастабильные стали, одноосное растяжение, фазовый состав, толщина скин-слоя, вихретоковый метод

Библиография:

  1. Филиппов М. А., Литвинов В. С., Немировский Ю. Р. Стали с метастабильным аустенитом. – М. : Металлургия, 1988. – 255 с.
  2. Borgioli F. From austenitic stainless steel to expanded austenite-S phase: formation, characteristics and properties of an elusive metastable phase // Metals. – 2020. – Vol. 10, iss. 2, No. 187. – P. 1–46. – DOI: 10.3390/met10020187.
  3. Electron beam surface treatment of 316L austenitic stainless steel: improvements in hardness, wear, and corrosion resistance / S. Basak, S. K. Sharma, M. Mondal, ·K. K. Sahu, S. Gollapudi, J. D. Majumdar, S. T. Hong // Metals and Materials International. – 2020. – Vol. 27, iss. 5. – P. 953–961. – DOI: 10.1007/s12540-020-00773-y.
  4. Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels // Materials Science and Engineering R-Reports. – 2009. – Vol. 65, iss. 4–6. – P. 39–104. – DOI: 10.1016/j.mser.2009.03.001.
  5. Improving the Strength of the Aisi 321 Austenitic Stainless Steel by Frictional Treatment / R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, A. L. Osintseva // Diagnostics, Resource and Mechanics of materials and structures. – 2017. – Iss. 5. – P. 43–62. – DOI: 10.17804/2410-9908.2017.5.043-062. 
  6. Повышение трибологических свойств аустенитной стали 12Х18Н10Т наноструктурирующей фрикционной обработкой / А. В. Макаров, П. А. Скорынина, А. Л. Осинцева, А. С. Юровских, Р. А. Саврай // Обработка металлов (технология, оборудование, инструменты). – 2015. – № 4 (69). – С. 80–92. – DOI: 10.17212/1994-6309-2015-4-80-92.
  7. Khaksaran A., Taghiabadi R., Jafarzadegan M. Tribological properties of surface friction hardened AISI 316L steel // Transactions of the Indian Institute of Metals. – 2021. – 74 (8). –P. 1979–1989. – DOI: 10.1007/s12666-021-02306-6.
  8. Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel / A.V. Makarov, P. A. Skorynina, A. S. Yurovskikh, A. L. Osintseva // The Physics of Metals and Metallography. –  2017. – Vol. 118, No. 12. – P. 1225–1235.  – DOI: 10.1134/S0031918X17120092.
  9. Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel / S. Takaki, K. Fukunaga, J. Syarif, T. Tsuchiyama // Mater. Trans. – 2004. – 45 (7). – P. 2245–2251. –DOI: 10.2320/matertrans.45.2245.
  10. Characterization of gradient properties generated by SMAT for a biomedical grade 316L stainless steel / Y. Wu, B. Guelorget, Z. Sun, R. Déturche, D. Retraint // Materials Characterization. – 2019. – Vol. 155. – P. 109788. – DOI: 10.1016/j.matchar.2019.109788.
  11. Development of Methods for Steel Surface Deformation Nanostructuring / A. V. Makarov, R. A. Savray, P. A. Skorynina, E. G. Volkov // Metal Science and Heat Treatment. – 2020. – Vol. 62. – P. 61–69. – DOI: 10.1007/s11041-020-00529-w.
  12. Savrai R. A., Kolobylin Y. M., Volkova E. G. Micromechanical characteristics of the surface layer of metastable austenitic steel after frictional treatment // The Physics of Metals and Metallography. – 2021. – Vol. 122, No. 8. – P. 800–806. – DOI: 10.1134/S0031918X21080123.
  13. Savrai R. A., Kogan L. K. Effect of Hardening Frictional Treatment on Features of Eddy Current Testing of Fatigue Degradation of Metastable Austenitic Steel under Gigacycle Contact Fatigue Loading // Russian Journal of Nondestructive Testing. – 2022. – Vol. 58. – P. 722–731. – DOI: 10.1134/S1061830922080095. 
  14. Eddy current characterization of cold-worked AISI 321 stainless steel / V. M. A. Silva, C. G. Camerini, J. M. Pardal, J. G. de Blаs, G. R. Pereira // Journal of Materials Research and Technology. – 2018. – Vol. 7, iss. 3. – P. 395– 401. – DOI: 10.1016/j.jmrt.2018.07.002.
  15. Liu K., Zhao Z., Zhang Z. Eddy current assessment of the cold rolled deformation behavior of AISI stainless steel // Journal of Materials Engineering and Performance. – 2012. – Vol. 21, iss. 8. – P. 1772–1776. – DOI: 10.1007/s11665-011-0080-4.
  16. Change in magnetic properties of metastable austenitic steel due to elastoplastic deformation / E. S. Gorkunov, S. M. Zadvorkin, S. Yu. Mitropolskaya, D. I. Vichuzhanin, K.E. Solov’ev // Metal Science and Heat Treatment. – 2009. – Vol. 51. – P. 423–428. – DOI: 10.1007/S11041-010-9185-X.
  17. Миркин Л. И. Рентгеноструктурный контроль машиностроительных материалов : справочник. – М. : Изд-во МГУ, 1976. – 140 с.
  18. Дорофеев А. Л., Казаманов Ю. Г., Черенкова З. В. Метод вихревых токов (индукционная структуроскопия, дефектоскопия и толщинометрия). – М. : Машиностроение, 1969. – 89 с.
  19. Бобров А. Л., Власов К. В., Бехер С. А. Основы вихретокового неразрушающего контроля: учебное пособие. – Новосибирск : Изд-во СГУПС, 2019. – 98 с.
  20. Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter / D. I. Vychuzhanin, A. V. Makarov, S. V. Smirnov, N. A. Pozdeeva, I. Y. Malygina // Journal of Machinery Manufacture and Reliability. – 2011. – Vol. 40, No. 6. – P. 554–560. – DOI: 10.3103/S1052618811050190.
  21. Savrai R. A., Osintseva A. L. Effect of hardened surface layer obtained by frictional treatment on the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests // Materials Science and Engineering: A. – 2021. – Vol. 802. – 140679. – DOI: 10.1016/j.msea.2020.140679.

PDF      

Библиографическая ссылка на статью

Goruleva L. S., Zadvorkin S. M., Mushnikov A. N. Effect of Plastic Deformation on the Phase Composition and Electromagnetic Characteristics of the 321n Austenitic Steel (08kh18n10t) // Diagnostics, Resource and Mechanics of materials and structures. - 2022. - Iss. 6. - P. 95-106. -
DOI: 10.17804/2410-9908.2022.6.095-106. -
URL: http://dream-journal.org/issues/2022-6/2022-6_387.html
(accessed: 25.04.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru