Электронный научный журнал
 
Diagnostics, Resource and Mechanics 
         of materials and structures
ВыпускиО журналеАвторуРецензентуКонтактыНовостиРегистрация

Все выпуски

Все выпуски
 
2024 Выпуск 2
 
2024 Выпуск 1
 
2023 Выпуск 6
 
2023 Выпуск 5
 
2023 Выпуск 4
 
2023 Выпуск 3
 
2023 Выпуск 2
 
2023 Выпуск 1
 
2022 Выпуск 6
 
2022 Выпуск 5
 
2022 Выпуск 4
 
2022 Выпуск 3
 
2022 Выпуск 2
 
2022 Выпуск 1
 
2021 Выпуск 6
 
2021 Выпуск 5
 
2021 Выпуск 4
 
2021 Выпуск 3
 
2021 Выпуск 2
 
2021 Выпуск 1
 
2020 Выпуск 6
 
2020 Выпуск 5
 
2020 Выпуск 4
 
2020 Выпуск 3
 
2020 Выпуск 2
 
2020 Выпуск 1
 
2019 Выпуск 6
 
2019 Выпуск 5
 
2019 Выпуск 4
 
2019 Выпуск 3
 
2019 Выпуск 2
 
2019 Выпуск 1
 
2018 Выпуск 6
 
2018 Выпуск 5
 
2018 Выпуск 4
 
2018 Выпуск 3
 
2018 Выпуск 2
 
2018 Выпуск 1
 
2017 Выпуск 6
 
2017 Выпуск 5
 
2017 Выпуск 4
 
2017 Выпуск 3
 
2017 Выпуск 2
 
2017 Выпуск 1
 
2016 Выпуск 6
 
2016 Выпуск 5
 
2016 Выпуск 4
 
2016 Выпуск 3
 
2016 Выпуск 2
 
2016 Выпуск 1
 
2015 Выпуск 6
 
2015 Выпуск 5
 
2015 Выпуск 4
 
2015 Выпуск 3
 
2015 Выпуск 2
 
2015 Выпуск 1

 

 

 

 

 

A. B. Vandyshev

ESTIMATING THE EFFECT OF THE MAIN DESIGN PARAMETERS ON THE EFFECTIVENESS OF HIGH-PURITY HYDROGEN PRODUCTION FROM RAW HYDROCARBONS IN MEMBRANE CATALYTIC DEVICES

DOI: 10.17804/2410-9908.2023.4.029-046

The paper presents the results of the application of a physically grounded mathematical model, verified through numerous practical examples, intended for estimating the effect of some design factors (membrane thickness and the system of high-purity hydrogen outlet from the under-membrane space of membrane elements) on the effectiveness and efficiency of the production
of highly pure hydrogen from the products of steam conversion of hydrocarbons in advanced membrane catalytic devices.

Keywords: mathematical modeling, design factors, membrane catalytic devices, high-purity hydrogen, raw hydrocarbons

Bibliography:

  1. Murav'ev, L.L., Vandyshev, A.B., and Makarov, V.M. Modeling of membrane extraction of hydrogen from the products of steam conversion of hydrocarbons. Theoretical Foundations of Chemical Engineering, 1999, 33, 258–263.
  2. Vandyshev, A.B. Analyzing the parameters of membrane catalytic systems for extraction of highly pure hydrogen from hydrocarbon feedstock with the application of mathematical modeling. Diagnostics, Resource and Mechanics of materials and structures, 2016, 4, 6–46. DOI: 10.17804/2410-9908.2016.4.006-045. Available at: http://dream-journal.org/issues/2016-4/2016-4_87.html
  3. Vandyshev, A.B. and Kulikov, V.A. Assessment of the effects of temperature and pressure on the efficiency of high-purity hydrogen production from hydrocarbon feedstocks in membrane-catalytic devices. Chemical and Petroleum Engineering, 2021, 56, 799–808. DOI: 10.1007/s10556-021-00845-9.
  4. Vandyshev, A.B. and Kulikov, V.A. Assessment of the effect of hydrocarbon and steam mixture flow rate on the main parameters of high-purity hydrogen production in a membrane-catalytic device with a fixed membrane area. Chemical and Petroleum Engineering, 2021, 57, 639–646. DOI: 10.1007/s10556-021-00989-8.
  5. Vandyshev, A.B. Estimating the effect of some individual technological factors on the effectiveness of producing high-purity hydrogen from hydrocarbons in catalytic membrane devices. Diagnostics, Resource and Mechanics of materials and structures, 2022, 4, 6–36. DOI: 10.17804/2410-9908.2022.4.006-036. Available at: http://dream-journal.org/issues/2022-4/2022-4_359.html
  6. Vandyshev, A.B. and Kulikov, V.A. Analysis of the efficiency of a Pd/Ag membrane with a thickness of 2.25 microns on a porous ceramic substrate in a laboratory membrane reactor. Chemical and Petroleum Engineering, 2019, 55, 129–135. DOI: 10.1007/s10556-019-00592-y.
  7. Vandyshev, A.B. and Kulikov, V.A. Analysis of parameters for producing high-purity hydrogen from natural gas in a tubular type membrane-catalytic module. Chemical and Petroleum Engineering, 2021, 56, 715–720. DOI: 10.1007/s10556-021-00833-z.
  8. Vandyshev, A.B. and Kulikov, V.A. Analysis of the results of testing an individual disk-type membrane-catalytic module for obtaining high-purity hydrogen from methane. Chemical and Petroleum Engineering, 2020, 55, 725–732. DOI: 10.1007/s10556-020-00686-y.
  9. Vandyshev, A.B. A systematic analysis of the parameters of disk-type membrane-catalytic devices for producing high-purity hydrogen from methane and diesel fuel. Diagnostics, Resource and Mechanics of materials and structures, 2020, 4, 6–27. DOI: 10.17804/2410-9908.2020.4.06-27. Available at: http://dream-journal.org/issues/2020-4/2020-4_284.html
  10. Goltsov, V.A. Hydrogen in metals. In: Atomno-Vodorodnaya Energetika i Tekhnologiya [Nuclear-Hydrogen Energy and Technology: Collection of Papers]. Atomizdat Publ., Moscow, 1978–1988, 1, 193–230.
  11. Vandyshev, A.B. and Kulikov, V.A. Hydrogen permeability of palladium membranes made of alloy V-1 in laboratory investigations and membrane devices. Chemical and Petroleum Engineering, 2015, 51, 396–401. DOI: 10.1007/s10556-015-0058-4.
  12. Babak, V.N., Didenko, L.P., Kvurt, Yu.P., Sementsova, L.A., and Zakiev, S.E. Simulation of steam methane reforming in a membrane reactor with a nickel catalyst and a palladium alloy foil. Theoretical Foundations of Chemical Engineering, 2021, 55, 390–402. DOI: 10.1134/S0040579521030027.
  13. Shirasaki, Y., Tsuneki, T., Ota, Y., Yasuda, I., Tachibana, S., Nakajima, H., and Kobayashi, K. Development of membrane reformer system for highly efficient hydrogen production from natural gas. International Journal of Hydrogen Energy, 2009, 34 (10), 4482–4487. DOI: 10.1016/j.ijhydene.2008.08.056.
  14. Zhivulko, S.A., Avakov, V.B., Langraft, I.K., and Urusov, A.P. Experience in the practical implementation of the hydrocarbon fuel conversion technology with hydrogen extraction from the reaction zone. In: Trudy V Vserossiyskoy konferentsii “Toplivnye Elementy i Energoustanovki na Ikh Osnove” [The Fifth All–Russian Conference on Fuel Cells and Power Plants Based on Them, Suzdal, June 17–21, 2018: Proceedings]. Suzdal, 2018, 62–64.
  15. Shirasaki, Y., Sato, T., Itoh, N., Tsuneki, T., Nishii, T., Kurokawa, H., Yasuda, I., Shimamori, Takagi, Y., Hikosaka, H., and Tanaka, H. Development of a membrane-on-catalyst hydrogen production module for steam reforming of city gas. Kagaku Kogaku Ronbunshu, 2017, 43, 336–341. DOI: 10.1252/KAKORONBUNSHU.43.336.
  16. Lukyanov, B.N. Obtaining ultra-pure hydrogen for fuel cells in the reactors with membrane separation. Chemistry for Sustainable Development, 2012, 20 (3), 251–263.
  17. Baboshin, V.M., Buevich, Yu.A., Ivonin, A.K., Kirnos, I.V., and Kukui, B.G. Diffusion separation of hydrogen from gaseous mixtures. Journal of Engineering Physics, 1984, 47, 821–826. DOI: 10.1007/BF00832599.
  18. Vandyshev, A.B., Kulikov, V.A., Kirnos, I.V., and Nikishin, S.N. High-temperature membrane apparatuses in systems for repeated utilization of hydrogen. Chemical and Petroleum Engineering, 2006, 42, 640–644. DOI: 10.1007/s10556-006-0155-5.
  19. Vandyshev, A.B., Kulikov, V.A., and Nikishin, S.N. Analysis of flow-rate characteristics of high-output membrane equipment for the production of ultra-pure hydrogen. Chemical and Petroleum Engineering, 2010, 46, 72–78. DOI: 10.1007/s10556-010-9294-9.

А. Б. Вандышев

ОЦЕНКА ВЛИЯНИЯ ОСНОВНЫХ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ НА ЭФФЕКТИВНОСТЬ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО ВОДОРОДА В МЕМБРАННО-КАТАЛИТИЧЕСКИХ УСТРОЙСТВАХ ИЗ УГЛЕВОДОРОДНОГО СЫРЬЯ

Приведены результаты использования физически обоснованной математической модели, проверенной на многочисленных практических примерах, для оценки влияния некоторых конструктивных факторов (толщины мембраны и системы отвода высокочистого водорода из подмембранного пространства мембранных элементов) на эффективность и экономичность получения высокочистого водорода из продуктов паровой конверсии углеводородов в перспективных мембранно-каталитических устройствах.

Ключевые слова: математическое моделирование, конструктивные факторы, мембранно-каталитические устройства, высокочистый водород, углеводородное сырье

Библиография:

  1. Muravyev L. L., Vandyshev A. B., Makarov V. M. Modeling of membrane extraction of hydrogen from the products of steam conversion of hydrocarbons // Theoretical Foundations of Chemical Engineering. – 1999. – Vol. 33. – P. 258–263.
  2. Vandyshev A. B. Analyzing the parameters of membrane catalytic systems for extraction of highly pure hydrogen from hydrocarbon feedstock with the application of mathematical modeling // Diagnostics, Resource and Mechanics of materials and structures. – 2016. – Iss. 4. – P. 6–46. – DOI: 10.17804/2410-9908.2016.4.006-045. – URL: http://dream-journal.org/issues/2016-4/2016-4_87.html
  3. Vandyshev A. B., Kulikov V. A. Assessment of the effects of temperature and pressure on the efficiency of high-purity hydrogen production from hydrocarbon feedstocks in membrane-catalytic devices // Chemical and Petroleum Engineering. – 2021. – Vol. 56. – P. 799–808. – DOI: 10.1007/s10556-021-00845-9.
  4. Vandyshev A. B., Kulikov V. A. Assessment of the effect of hydrocarbon and steam mixture flow rate on the main parameters of high-purity hydrogen production in a membrane-catalytic device with a fixed membrane area // Chemical and Petroleum Engineering. – 2021. – Vol. 57. – P. 639–646. – DOI: 10.1007/s10556-021-00989-8.
  5. Vandyshev A. B. Estimating the effect of some individual technological factors on the effectiveness of producing high-purity hydrogen from hydrocarbons in catalytic membrane devices // Diagnostics, Resource and Mechanics of materials and structures. – 2022. – Iss. 4. – P. 6–36. – DOI: 10.17804/2410-9908.2022.4.006-036. – URL: http://dream-journal.org/issues/2022-4/2022-4_359.html
  6. Vandyshev A. B., Kulikov V. A. Analysis of the efficiency of a Pd/Ag membrane with a thickness of 2.25 microns on a porous ceramic substrate in a laboratory membrane reactor // Chemical and Petroleum Engineering. – 2019. – Vol. 55. – P. 129–135. – DOI: 10.1007/s10556-019-00592-y.
  7. Vandyshev A. B., Kulikov V. A. Analysis of parameters for producing high-purity hydrogen from natural gas in a tubular type membrane-catalytic module // Chemical and Petroleum Engineering. – 2021. – Vol. 56. – P. 715–720. – DOI: 10.1007/s10556-021-00833-z.
  8. Vandyshev A. B., Kulikov V. A. Analysis of the results of testing an individual disk-type membrane-catalytic module for obtaining high-purity hydrogen from methane // Chemical and Petroleum Engineering. – 2020. – Vol. 55. – P. 725–732. – DOI: 10.1007/s10556-020-00686-y.
  9. Vandyshev A. B. A systematic analysis of the parameters of disk-type membrane-catalytic devices for producing high-purity hydrogen from methane and diesel fuel // Diagnostics, Resource and Mechanics of materials and structures. – 2020. – Iss. 4. – P. 6–27. – DOI: 10.17804/2410-9908.2020.4.06-27. – URL: http://dream-journal.org/issues/2020-4/2020-4_284.html
  10. Гольцов В. А. Водород в металлах // Атомно-водородная энергетика и технология : сборник статей. – М. : Атомиздат, 1978–1988. – Вып. 1. – С. 193–230.
  11. Vandyshev A. B., Kulikov V. A. Hydrogen permeability of palladium membranes made of alloy V-1 in laboratory investigations and membrane devices // Chemical and Petroleum Engineering. – 2015. – Vol. 51. – P. 396–401. – DOI: 10.1007/s10556-015-0058-4.
  12. Simulation of steam methane reforming in a membrane reactor with a nickel catalyst and a palladium alloy foil / V. N. Babak, L. P. Didenko, Yu. P. Kvurt, L. A. Sementsova, S. E. Zakiev // Theoretical Foundations of Chemical Engineering. – 2021. – Vol. 55. – P. 390–402. – DOI: 10.1134/S0040579521030027.
  13. Development of membrane reformer system for highly efficient hydrogen production from natural gas / Y. Shirasaki, T. Tsuneki, Y. Ota, I. Yasuda, S. Tachibana, H. Nakajima, K. Kobayashi // International Journal of Hydrogen Energy. – 2009. – Vol. 34, iss. 10. – P. 4482–4487. – DOI: 10.1016/j.ijhydene.2008.08.056.
  14. Опыт практической реализации технологии конверсии углеводородного топлива с отбором водорода из зоны реакции / С. А. Живулько, В. Б. Аваков, И. К. Ланграфт, А. Р. Урусов // Труды V Всероссийской конференции «Топливные элементы и энергоустановки на их основе», Суздаль, 17–21 июня 2018 г. – Суздаль, 2018. – С. 62–64.
  15. Development of a membrane-on-catalyst hydrogen production module for steam reforming of city gas / Y. Shirasaki, T. Sato, N. Itoh, T. Tsuneki, T. Nishii, H. Kurokawa, I. Yasuda, T. Shimamori, Y. Takagi, H. Hikosaka, H. Tanaka // Kagaku Kogaku Ronbunshu. – 2017. – Vol. 43. – P. 336–341. – DOI: 10.1252/KAKORONBUNSHU.43.336.
  16. Lukyanov B. N. Obtaining ultra-pure hydrogen for fuel cells in the reactors with membrane separation // Chemistry for Sustainable Development. – 2012. – Vol. 20, No. 3. – P. 251–263.
  17. Diffusion separation of hydrogen from gaseous mixtures / V. M. Baboshin, Yu. A. Buevich, A. K. Ivonin, I. V. Kirnos, B. G. Kukui // Journal of Engineering Physics. – 1984. – Vol. 47. – P. 821–826. – DOI: 10.1007/BF00832599.
  18. High-temperature membrane apparatuses in systems for repeated utilization of hydrogen / A. B. Vandyshev, V. A. Kulikov, I. V. Kirnos, S. N. Nikishin // Chemical and Petroleum Engineering. – 2006. – Vol. 42. – P. 640–644. – DOI: 10.1007/s10556-006-0155-5.
  19. Vandyshev A. B., Kulikov V. A., Nikishin S. N. Analysis of flow-rate characteristics of high-output membrane equipment for the production of ultra-pure hydrogen // Chemical and Petroleum Engineering. – 2010. – Vol. 46. – P. 72–78. – DOI: 10.1007/s10556-010-9294-9.

PDF      

Библиографическая ссылка на статью

Vandyshev A. B. Estimating the Effect of the Main Design Parameters on the Effectiveness of High-Purity Hydrogen Production from Raw Hydrocarbons in Membrane Catalytic Devices // Diagnostics, Resource and Mechanics of materials and structures. - 2023. - Iss. 4. - P. 29-46. -
DOI: 10.17804/2410-9908.2023.4.029-046. -
URL: http://dream-journal.org/issues/content/article_405.html
(accessed: 08.05.2024).

 

импакт-фактор
РИНЦ 0.42

категория К2
в перечне ВАК

МРДМК 2024
ЦКП Пластометрия
НЭБ РИНЦ
Google Scholar


РНБ
Лань

 

Учредитель:  Федеральное государственное бюджетное учреждение науки Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук
Главный редактор:  С.В.Смирнов
При цитировании ссылка на Электронный научно-технический журнал "Diagnostics, Resource and Mechanics of materials and structures" обязательна. Воспроизведение материалов в электронных или иных изданиях без письменного разрешения редакции запрещено. Опубликованные в журнале материалы могут использоваться только в некоммерческих целях.
Контакты  
 
Главная E-mail 0+
 

ISSN 2410-9908 Регистрация СМИ в Роскомнадзоре Эл № ФС77-57355 от 24 марта 2014 г. © ИМАШ УрО РАН 2014-2024, www.imach.uran.ru